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This paper is concerned with the problem of diagonally scaling a given

nonnegative matrix a to one with prescribed row and column sums . The

approach is to represent one of the two scaling matrices as the solution

of a variational problem. This leads in a natural way to necessary and suf-

ficient conditions on the zero pattern of a so that such a scaling exists.

In addition the convergence of the successive prescribed row arid colunti sum

normalizations is established. Certain invariants under diagonal scaling

are used to actually compute the desired scaled matrix , and examples are

provided. Finally , at the end of the paper , a discussion of infinite systems

is presented.
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SIGNIFICANCE AND EXPLANAT ION

4 In order to avoid heavy round-off error when solving large systems of

‘1 linear equations on the computer , it is useful to scale the coefficient matrix.

This scaling amounts to multiplying the matrix by diagonal matrices on the left
I

and right. We consider nonnegative coefficients and concern ourselves with the

problem of choosing appropriate diagonal matrices in order that the scaled

matrix have certain prescribed row and column sums. In addition , if some of

the coefficients are zero, we ask if this can at all be done.

Our approach is to replace the scaling problem by an equivalent problem

of finding the minimum of a certain function. This facilitates much of the

analysis and leads in a natural way to necessary and sufficient conditions on

the pattern of zeros in the coefficient matrix. Included is a technique for

actually computing the appropriate scaling matrices, a number of examples

illustrating the results, and a discussion of infinite systems.

The responsibility for the wording and views expressed in this descriptive
sununary lies with MRC, and not with the authors of this report.
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A VARIATIONAL EQUIVALENT TO DIAGONAL SCALING

Marc A. Berger and C. P. FeIley

Introduction

In this paper we present a new approach to the problem of diagonally scaling a non-

negative mxn matrix a to one with prescribed row and colume sums a and 6 ; and

to the question of convergence of the successive a and 6 row and colume sum normali-

zations of a • Our methods show this equivalent to the problem of minimizing
n in 6.
f l (~~ a .t .)~

• . ij ij—l i—i
Ut . itover P
~ 

(positive vectors in P ) subject to

in
i l t. = 1 .

• 1

And this leads us in a natural way to conditions on the pattern of zero elements in a

(Theorem 2.D) - The main computational result underlying the theoretical parts of the

paper states that the solution to the above minimum problem is given by (3.12) .

In §1 we present the problem and the tools employed to solve it. In §2 the existence ,

non—existence, uniqueness and convergence results are presented for finite systems. In

§3 certain invariants under diagonal. scaling are described , and used to actually compute

the desired scaled matrix. And some examples are provided . Finally,  in the last section

a discussion of infinite systems , using functional analysis , is presented .

The results In §2 concerning the scaling and convergence questions are not new . The

original work involved doubly stochastic matrices , and appears in Sinkhorn [ 7 ] ,  Sin khorn

and I(nopp [8], Menon [53 ,  and Brualdi , Parter and Schneider (3] .  The generalization to

non-square matrices and arbitrary positive a and 6 appears in Bacharach (1], Brualdi (23,

and Menon and Schneider [6]

The approach of representing the solution in terms r’f a variational problem is used

by Theil [9] and Gorman [41. The former minimizes

~~~ log

over positive matrices b having a and 6 as row and colunri sums . And the latter

minimizes
Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS75-17385 AOl.
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a~j ~~~~~ 
— ~~ a~t~ - 6 a

i~l j 1  i=l i—i

over ~~~~ . The problem we formulate, however , is tied directly to the Menon operator
+

in (5] ,  and leads in a most natural and direct way to the full admissibility condition of

Theorem 2 .D .

§1. The Scaling Problem

Let a and 6 be positive vectors in and Rn , respectively, satisfying

(1.1) = 

j =l ~

And let Q denote the set of nonnegative matrices a in R
5 ~ with no vanishing

rows ár columas. Define normalizing operators R and C from a into itself by

(1.2) (Ra).. = a . . ( ~~~ a . f ) 1
0. , (Ca).. = a . . ( ~~~ a

kj
) 16 . .

(1.3) A CR

The reader can verify that

(1.4) ~~A) = ~(C) n ~ (R) ~3(C,R)

over the set R ”~ of positive matrices in JR~ ~ where ~ denotes the set of fixed

points. Of course , over Q , ~ (A) is strictly larger than ~ (C,R). We concern ourselves

with the following two problems.

For which a € ~ does the sequence

N1 (A a} converge to a limit in ~(C ,R), and to what limit?

For which a € ~ do there exist positive diagonal matrices x and y
(P

2
)

such that xay € 7(C,R), and are they unique up to scaler multiples?

Let R denote the set of positive vectors t in R~~. For a fixed a € Q we

essociate an operator A A (a) from into itself by

(1.5) (At)i 
— 

j~ l 
a
~~

S
3 k=l 

a
k5
t
k
) ] a .

This operator was defined by Menon in [5 1 , and was used by Brualdi , Parter and Schneider

in [3] to analyze (P2
) when 3(C,R) is the assignment polytope G • It was also used

by Menon and Schneide r in [6) to analyze 
~~ 

in the nEre general setting put forth here.

—2—
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We note that if At.t then the matrix b defined by
4~~~ i

(1.6) b.~ — ai j
( 
k—i 

&j(jk i j

is in ~~(C ,R) .  And conversely , if b of the form ~~~ — aj iti
s
i 

is in ~ (C,R), then

At t. Furthern~ re ,

(1.7) — a~ .[) ~~j
(~~

_1
t

k
]
_1
(~~

_l
t
0)
i
6
j

where
n

(1.8) — 

~~~~

And by inverting this it follows that

N in
( 1.9) (A NtO ) .  C?~~~ fl [ ~ (A k ) ~—l

~ k—O j—1 1]

Thus A allows one to consider both (P
1) and (P

2
).

We show in the next section that solving At—t corresponds to minimizing

n m 6. a —a .
11 ( ~ a. .t.) ~ TI t. . This leads us in a natural way to conditions on a and 6
j—l i=l ~~~~ i=1
relative to the pat tern of zeros in a , such that (P ) and (P ) may be solved. In the

1 2

third section we construct invariants of a under C and R which allow one to compute

• the limit of {A 1
~a}. Finally , in the last section we discuss the case where one or both

of m and n are infinite, and solve analogs of (P1
) and (P2

) in this setting.

§2. Existence - Uniqueness - Convergence

Consider the function • defined Ofl R by

n m 6 a -a
(2.1) ~~t)  = TI C ~ aijtj

) ~ IT t~
j=l i—l i—i

The condition V log ~(t) 0 is equivalent to At—t. Thus if • has a critical point

in P~ then, in accord with the remarks in the previous section , there exist positive

diagonal matrices x and y such that xay e ~(C,R). We consider the problem of mini-

mizing • . It follows from (1.1) that • is homogeneous in t , and thus it suffices to

impose the constraint t ~ B • where

(2.2) B = (t c ~ rn 

i=l 
~~ — 11

—3 — 
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If a € then • tends to infinity as t approache s the boundary ~B from inside

of B . And since ~ is continuous in B , it follows that a minimum exists in B .

However , if some of the elements of a vanish , then this need not be the case. In fact , if

F is a proper subset of (1,.. . ,m} and F’ is it: complement , we can examine the

behavior of •(t + s-r 5
) as c tends to zero; where t . is zero for i € F and positive

for i € F’ , and t € R~~ with t = 1 for i e F • The condition that the limit be
C +

in finite is

(2.3)  ~ 6. < 
~J€ C (F) ~ isF

where

(2 .4)  C(F) — { j a~ . 0 for each k € F’}

Furthermore , note that C (F) is empty unless F contains one of the sets

(2.5) Ft 
—

. 
{ i : ~~~ > 01

Theorem 2.A:

Let a € Q be such that (2.3) holds for all proper subsets F which are unions of

the sets Ft in (2.5). Then there exist positive diagonal matrices x and y

such that xay a ~T(C ,R ) ,  and are unique ~~ to scalar multiples.

Proof:

First we establish (2 .3 )  for any proper subset F • Let F* be the union of the F t

contained in F . Then F C F and C(F ) = C(F ) . Therefore (2.3 )  must hold for F

*since it holds for F •

* * * Ut
Let t € ~B. Then lim •(t + Cr  ) = whenever t + t P • Thus it follows

£ 0 +
C+O

that lime $( t ) — ~~. This means that • has a minimum in B , and thus that x and y
t-* t

exist.

To establish uniqueness it suffices to show that if and are in 3(C ,R)

where x and are positive diagonal matrices then —

(2 . 6) j1 ~~ .(l  — ~j~ j
) — — ~~~ — 0

—4— 
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Scale and so that each 
~~

. < 1 and each 
~~~

. > 1, and at least one element is

equal to one. Say x . — 1. Then it follows from (2.6) that ~~~. — 1 whenever 
~~ 

> 0.

~ ~o 0
Thus a . . — a x y4 for every j , and moreover, some y — 1. Then similarly

10) ~ -~ ‘o -‘ ‘a
a~~. — 

~~~~~
. 

~~~~~~~ 

for every i . That is, the i
0
-th row and j

0
-th colt~~t of -

~o ~o ~ovanish. So we delete them and consider the (m—l) x (n-i) case. Continuing this reduc-

tion , eventually either one or both of and reduce to a single element . And this

case is trivial.

Theorem 2.8:

Under the conditions of Theorem 2.A , the sequence {A Na) converges to x a y

Proof:

- N OIt follows from ( 1.7) and the uniqueness result that the convergence of (A t } to

an interior fixed point t of A , implies the convergence of (A Nal  to xay. suppose

first that there exists p such that (a)~ € where a denotes the transpose

of a • Then for any distinct vectors u and v in ]R with u < v , we not Only have

Au < Xv , but (A ~u). < (X~v). for every i . Now let t be an interior fixed point of

A , and let (ct0 ,60] be the smallest interval such that ci0t < t° < ~~t . Then

a0t < At° < ~0t and we can reduce the interval [ct0 ,80 1 to the smallest [a1,81] such

that a
1
t < At° < 81t. Continuing in this manner we generate a sequence of nested inter-

vals 
~
“N ’8N1 such that

N O(2. 7) aNt 
( A t

and LSNS BNI is the smallest such interval. This nested sequence converges to [a,B]

an~ it suffices now to show that a = B.
* 

Nk 0So suppose a ~ B and let t — h a  A t be any cluster point of the sequence

N O  *
(A t I. Then at < t < Bt and (a,B ]  is the smallest such interval. But then

Nk+P ot = lim A t is another cluster point , and at < t . < Bt . for every i ; and this
k-*~ 

i ~

contradicts the minimality of [a ,B1 . Thus a = B.

Suppose next that no powers of as are positive . Then , since aa has a positive

diagonal , it can be written as a direct sum of blocks b
q over subspaces

]Rm = (tERm : t 0 i e F }q i q

—5— 
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where Fq
C Z • and each bq has a positive power. And A can accordingly be decomposed

into operators Aq acting on 
+ • the set of positive vectors in . Thus it suffices

to establish the convergence of ( A N 
~~~~ where ~~~~ is the corresponding restriction of

t0 to R~’ . Furthermore , this will follow iamediately from the first part of this proof,

as long as each A has fixed points in ~m 
+ 
. And this is i~~~ diate from Theorem 2.A ,

which establishes fixed points for A in

Theoreme 2.A and 2.B solve (P
1

) and (P
2
) under conditions ( 2 . 3 ) .  In particular we

- . note that under these conditions there always exists a matrix b € ~J(C,R) such that

a . .  = 0 if and only if b . .  — 0. What we show below is that if there exists any F such
3.) 1)

that

(2 . 8) ~ 6 . > ) ai
j€C (F) ~

then no such b exists , even if we allow b to have extra zeros. And therefore for these

a € 0  no diagonal matrices x and y exist for 
~~~~ 

And (A
Nal does not converge to

a limit in ~(C,R).

Theorem 2 .C:

Suppose a c 0 is such that (2.8) holds for some F . Then for no b € Q n ~ (C ,R)

is it true that a. - — 0 implies b. - = 0
1) 1.)

Proof:

Suppose such a b exists. Then (2.8) holds for b even if b has more zeros than

a , because this will only serve to enlarge C (F ) .  But then

~ a. — ~ ~~~~~~~ ~ ~ b~~. = ~ ~~b . . = ~ ~ b —  
~i€F i€F j=l icP j€C (F) ~ j€C(F) i€F ~ j€C (F) i—h ~ jeC(F)

which is a contradiction. U

Finally we wish to consider the case where

(2.9) 6 — ~
j€C(F) iEF

for some proper subset(s) F , (2.3) holding for the others. In this case in order that

x and y solving (P2
) exist, it is necessary that

(2.10) a
u 

— 0 , i € F , j  e C( F ) ’

for those F satisfying (2.9). This is simply because it is necessary that x .a .j Y j  0 ,

-6-



i € F , j a C(F)’. The result below shows that these conditions are sufficient as well.

In order to avoid cumbersome hypotheses we suimearize these conditions in a definition .

Thus a € ~ will be called ~~~~~ admissible if (2.3) or (2.9) hold for every proper sub-

set F ; and (2.10) holds for those F satisfying (2.9).

Theorem 2 .D :

a € 0 is ~~jy 
admissible if and if there exist diagonal matrices x and y

solving (P
2

) .  And under these conditions {A Na} converges to xay

Proof:

Sufficiency has already been established in the discussion above . To prove necessity

we can assume (2 .9)  holds for some proper subset F . Otherwise the existence of x and

y follows directly from Theorem 2.A. Because of (2.10) we can reduce the problem to the

two sub—matrices (a. .  i € F, j € C(p)) and (a .. i € F , j € C(F)’). Both of these

sub—matrices are fully admissible and their dimensions are strictly less than those of a -

Thus an induction establishes the existence of diagonal matrices x’ and y’, x ’ and y”

solving (P
2
) for these smaller matrices. And x’ ,x’ and y ,y ” can be pieced together

to construct diagonal matrices x and y solving (P2
) for a

The vector (x.) is a f i x e d  point of A , and its existence is enough to justify the

proof of Theorem 2.B. •

If a €~7 is not fully admissible , but is such that (2.3) or (2.9) hold for every

proper subset F , then a is said to be ~axtia1ly admissible. For such a matrix a

there will not exist b € 0  n ~ (C,R) having the same zero pattern as a . (But if we

allow b to have extra zeros, then such matrices b will exist.) Thus Theorem 2.0

amounts to saying that whenever there exists a matrix in ~ ~ ~ (C,R) having the same zero

pattern as a , then x and y exist, and conversely. Hence ~ defined by (2.1) has

critical points in R if and only if a is fully admissible. Finally we note that for

the doubly stochastic case, where n~ n and a . — 6 = 1 for each i and j , full admis-
1 j

sibility reduces to a cardinahity condition.

— 7--
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§3. Invariants

Observe that if it is a k-cycle then
k

(3.1) H a . - a .
P~l 

3.p 3p 3.p

is invariant under C and It , provided it is well-defined. In fact it is invariant

under any diagonal scaling x a y. These ratios can be used to compute him ANa when

it exists, as illustrated by the following example.

Example 3.A:

Let

(a a12 a,i3

a _ (  a21 0 a23

a31 
a

32 
0

and a. = 6 . — 1 for each i and j . Then
1 3

—1 —1 —1r — a
12

a23a31a
13a32

a21

is invariant. Thus

¶ (0 ~j  1—u

N Ilim A a (  1—u 0
N - ’ ”

i— u a
1 1

where p — r3 (l+r 3
)~~ - And a diagonal scaling that leads to this is

x — diag ( 1 , _ll _L. 
• 

.J~.
a23 1—u a32 v

a 2
y = diag( 

32 JL.. ..~L.a31a12 1 p • a12, a13

Finally, for general a and 6 conditions (2 .3)  become

< a
2 

+ 03 62 < °1 + 
03 6

3 
< 01 +

From now on we assume that a has a positive row and colusm. Without loss of gener-

ahity these may be the first row and coluur~. Then we can define a ratio matrix r by

—1 —].
(3.2) r. . — a . a a . a ..13 i)ll il 1]

This matrix is invariant under C and It , and can be used to define analogues of A

—8— 
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and ~~~. By writing the diagonal matrix x of (P2
) in the form x~ = t~ a.~ we are led

to consider the operator A defined by

(3. 3) ( At) . - (~~~r .. 6. 

~k~1 
k j k i

If At=t then the matrix b defined by

(3 .4 )  b. . — r. . (  ~ r .t )~~ t. 6. — a. - ( ~ ~~ .t a 1) t . a .
1 6 .

1] 13 k—i kj  k 1 3 1) k—i j  k ki 1 ii j

is in 3(C,R); and, conversely, if b of the form b . . = a. .t.a.
1s is in ~ (C,R) then

$ 
1] 1] 1 ii j

At—t. And the corresponding relationship between iterates of A and A is

(3.5) ~~ a).. = r..[ ~ r (A
N_l

tO) ]
_l

(A
N_l

t
O
)6

13 13 k=1 Icj k

where

0(3.6) t . = a . t.
1 i i i

And by inverting this it follows that

(3.7) (ANt
O ) - a . a~~~ fi [ ~ ~A

k
a). .1 1

~ i i i  k=O j=1
Similarly the corresponding function to minimize is

ii m 5. ~ -6.
(3.8) ~(t) = ii ( ~ r . .t.) ~ jj t.

- - 1 3 1  - 1
j — i i.=l i—i

• 
.
. 

Prc~b1em (P
2

) amounts to seeking a matrix b with the same ratio matrix as a , hav ing

prescribed row and column sums. And the uniqueness result in Theorem 2.A amounts to

saying that distinct matrices with identical row and column sums have distinct ratio

matrices. Finally , we note that because of (1.1) both ~ and $ are homogeneous in t,

and thus it suffices to minimize
n m 6 .

(3.9) WIt) = IT ( ~ a . .t .)  ~
• - 1 )1j= l ) 1

or
n m 6.

(3.10) ‘l’(t) = IT ( ~ r . .t .)
- - 1) 1
;j=1 i 1

over , subject to 
m a.

(3.11) II t.
1 

= 1
1

i—i

The solution to the former is

(3.12) t . = c fl a . L ~ (A ka ) .  .]~~~~1 k=0 1 j=1 ~
and the solution to the latter is

*(3.13) t . = c a ,  t
1 11 i

—9—



where c and C are appropriate scale factors. The remainder of this section is devoted

to examples.

Example 3.3:

For the case m=n=2 the limit is

( LI

\~~61
—p p+a

2—61

where p is a nonnegative solution of

2 r22a 1 + a 2 r
22 o16 1p — ( 5  + )p+

1 r22
—1 r

22
—l

provided a is nonsingular. Otherwise p = 0
1
61
(0
1
+0
2
)1

. If a22
0 the condition (2.3)

becomes 6
2 

< 01 , and if 6
2 

— 0
1 

then p — 0. The corresponding variational problem is to

62 ~°1minimize (s+1) (s+r
22

) s

o1+a2
02

• Here - s = t 1

Example 3.C:

For the case m’2 , n=3 the limit is

( p Ti

61—u 62—n ui+ n+ t5
3

— 0
1

where p , f l  are nonnegative solutions of

62 r
22 

5
~J Ifl+ —l~~~~~r ~, Tl 0r22 22

2 r
32

i5
1
+6

3 
r32

61 
r
32
a
1
6
1p + p r~— (a

~ + — i  )p — 
—l n + r —1 = 0

r32 r 32 32

These reduce to a single cubic in p . If r22 
— 1 then the first equation becomes

= 6
2

â~~~~ p . If r 32 
= 1 then the second equation reduces to (61 + 631p + 63 ru = O

~
6i

And if r 22 
= r

23 
= 1 then p = a1i5

1
(a 1 + a2 ) and r~ = a

1
6

2
(a

1
+a

2
) . The

• ponding variational problem is to

61 62 63 0
minimize (s+1) (s+r 22 ) (s-f r

23
) s

-10-
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• 01+02

‘1 0
Here, as before, s = ~ 

2
1

Example 3.0:

For the case m=n— 3 , o~~ 6~~i for each i and i ; if r23=r32=r22r33 
or if

r
22
=r

33—r23
r
32 

then the limit is a permuted matrix (i.e. all rows and colusits are

permutations of one another). In the former case it is symmetric; in the latter , skew—

symmetric.

Example 3.E:

Let 

a-~~~~~ ~ 

~

The conditions (2.3) become

02 < 6
1
+6
4 0

4 
< 61+62 6~ < 0

1
+0

3

Thus we can consider the case a. — 6 . — 1 for each i and j . The corresponding

variational problem is to

minimize (t1
+t2+t3

+t4) (t1
+t

3
) (t1

+t
2
+t

3
) (t

1
+t

3
+t4)

subject to t1t 2t 3t4 = 1

By symmetry t1=t 3 and t2
=t
4. 

Thus we need to minimize

(t~ + 1) (2t
1 

+ t1
1) 2

Letting s = t~ the condition for a minimum is ~~~ + 8s 2 
= 1. The only positive solu-

tion is ~ (/~-l). Thus

This means that diagonal scaling matrices are

x = diag(t1,
t
2,
t
3
,t
4
)

y = ~~diag(/~~~~il , t2
, /2 r5-4 , P~~~~~~~~ -4

—ii— 

~~~~~~~~~~~~~~~~~~~~~~~
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~~ I

k~. 
1

and the limit x a y is

/‘ 1 1 1 1 1 1

/ g - —  — - — g

( l — g  0 0

1 1 1 1 1 1
~~~~~ ~~

- 
~• = ~~~ g ~~-~~- g

a g 0

where g — ~~- (/~~~~ — 1) is the golden mean.

§4. Scaling Infinite Matrices

In this section we consider the scaling of infinite matrices; i.e. one or both of m

and n is infinite. We assume n — “, and that a E R m and 6 a are positive

vectors satisfying (1.1). Denote by ~m the Banach space of in finite mx=-matrices a

having real entries such that

(4. 1) ~ a..~~ IIa I I~ <

• j=h i=l ~
m p m

Note that 
~2 

is a Hilbert space for any m (even us~°). Let a € be positive, and

consider the following analogue of (P
2 ):

inFind t a R and a E R  such that the matrix b given by b . .  - a. .t .s .
+ + 13 1 3 1 3

satisfies

j=l 
b.~~~ a. , i — l ,. ..,m ; 

~ 
~~~~ 6~ , j = 1,2 

The matrix b a is said to be a solution of

Theorem 4.A.

has at most one solution.

Proof:

As in the proof of Theorem 2.A, we assume that and ~~~~~~~~~~~~~~~~ 
are solutions of

(p)’, and show that = t1 ; 
i — l,...,m . For each i — 1,. . .  ,m

in

(4 .2)  ~~ . = ~ a t
k—l i k k

where a € :Nt:sm is given by

—12—
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(4.3) czik Oj, t1 
~~

We note that ci satisfies

k=1 
~~ • •  — 1 , i h , . . . ,m ; 

~ 
~~~~ — 0k ’ k = 1 in

By Jensen’s inequality ~

(4.5) yi e
_t

i 

k=l 
aikyk ; ~ = ~~~~

If in — =, note that the sum oi the left of (4.5) converges,as < 1. We have

(4.6) 
i~l 

a
~Y~ 

~ k=l i=l 
a.ka.)yk 

=

and so

(4.7) = 

kl  
ciikYk 

; i — 1,. . .

But of course the same argument can be used to show that
in

(4.8) = 

k l ~~~~~ 
i = 1, . . .  ,m

• 

- 
for any integer n > 0. And by taking limits of sums it follows that

— ( y . —y ) 2 
~~ ~~ —~~ ) 2

1 1  r k 1(4 .9) e — /. a .J ~e• k—i
4,

If t. ~ t1 for some i. , then for all i = 1,...
2

(4.10) 
~ a.1~e < 1F k—i

Since, by (4.9), the inequality (4. 10) cannot hold for i=l, it must indeed be true that
4,
t is a constant vect.r. •

To consider the question of existence, suppose first that m < . For N > 1 let

= 

i=h 
ai
,
,/~ 

is . - According to Theorem 2.A there is a unique matrix a
N 

€

such that a.. = a.. t. s. and
1) 1) 1 J

N m
(4.11) ~ a!~. — a . , i = l , . .. ,m ; ~ a~~. — p 6 . , j = 1,2 , . . .

3. j l  13 N J

Define

~ a~~

( 4.12 ) b~~. —
13

0 , j > N

—13—
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• Theorem 4.B~

• For the case in < , the sequence 
- 

{bN } defined by (4.12) converges in the norm

intopology of to the solution b of (P2 ) ’ .

Proof:
14 N

The sequence - 
{bN) is bounded in and as such has a subsequence - {b k

1 which

• converges weakly to an element b a t~’. Clearly b . .  > 0  ; i = l , . . ., m , j = 1,2

• Define functionals f~ on by

(4.13) f.(z) = ~~ , , z € ~m 
-2

By taking weak limits it follows that f.(b) = - Thus b a and {b k } converges

to b in the norm topology of - And 
j~ l 

bu~ 
— 0

~. 
; i 1, . . .  1m . As in §3 define

r.. by (3.2). Then, again by taking limits,

• (4. 14) b . . b11 = r . .  b .1 b . .  ; i — 1,... ,m , j = 1,2 

And this shows that b is a solution to (P
2). •

If we write b . .  = a..t.s. then, as before, At=t , where A is given by (1.5).

And if R,C and A are de fined on by (1.2) and (1.3), then the same proof used for

Theorem 2 .B can be used here to establish the following result.

Theorem 4.C:

N . inThe sequence {A a} converges ~~ to the solution, b , of (P
2

) ’ .

For the case in = = the solution to ‘p2’ can be constructed as follows. For n > 1

set K
N 

~~~ 

- According to Theorem 4.A there is a unique aN a of the

form a.. = a .t.s. such that
13 i j i j

(4.15) 
3 1 

a~ . — 
~ N

0u , i — 1,. . .  ,N ; 

i~ 1 
a~~. = , j = 1,2 

As before , de fine

1 Na~~

(4.16) ~~~ —

0 , i> N

—14—
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An argument similar to the one used to prove Theorem 4.B establishes the following

I
: - result .

Theorem 4.D:

For the case in — “ , the sequence - 
{b

N
} defined by (4.16) converges in the norm

I’ topology of to the solution b of (P
2 ) ’  -

— 15—
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